Nuevo tipo de computadora quántica

Unos físicos han congestido entrelazar cuánticamente más de una docena de photones de forma efficient y predefinada. El logro establishes the bases for a new type of quantum computer.

The phenomena of the quantum world, so exotic that they often seem impossible from the perspective of the common everyday world, can be used without embargo for practical applications with actual technology that is already being developed. Por ejemplo, el entrelazamiento quántico: una connexion quántica entre participles que las une de una forma extraña, incluso si se paran hasta distancias colossals. It can be used, for example, in a quantum computer, a machine that, unlike a conventional computer, can perform numerous mathematical operations simultaneously. Sin embargo, para utilizar un computer quántico de forma provechosa, una large candidad de entrelazadas quánticamente deben trabajar juntas. Solo de este modo se conseguirá una quantity lo bastante grande de de bits quánticos o qubits.

The photons, the particles of light, are especially suitable for serving qubits because they are very robust by nature and easy to manipulate.

The team of Philip Thomas, from the Max Planck Institute of Quantum Optics in Germany, has now achieved an important step so that photons can be used in a truly practical way in technological applications such as quantum computing: for the first time, the team generated up to 14 photones entrelazados cuánticamente de forma predefinida y con alta eficiencia.

The key to achieving this quantum entanglement a la carte and of high precision was that the researchers used a single atom to emit photons and entangle them quantumly in a very specific way. For this, the researchers placed a rubidium atom in the center of an optical cavity, a kind of echo chamber for electromagnetic waves. Con una luz laser de una determinada frequencia, se pudo actuar con precisión en el estado del atomo. Through an additional control pulse, the researchers also specifically provoked the emission of a photon intertwined with the quantum state of the atom.

Repitieron este proceso varias veces y de una manera previously determined. Meanwhile, se manipuló el atomo de una manera determinada (en la jarga técnica, se giró). In this way, it was possible to create a chain of up to 14 particles of light that were quantumly intertwined between them by the rotations of the atom and that were brought to the desired state. As far as Thomas and his colleagues know, the set of 14 interconnected light particles is the largest amount of quantum entangled photons that has been generated in a laboratory so far.

[Img #66924]

A single rubidium atom is trapped in an optical resonator formed by two highly reflective mirrors. La excitación repetida del atomo hace que se emitan sucesivamente varios individuales photones entrelazados cuánticamente. (Image: MPQ)

But it is not only the amount of photons that are interlaced that makes a big step towards the development of powerful quantum computers: the form in which they are generated is also very different from conventional methods. Mediante esos métodos, los photones entrelazados cuánticamente se establecen essentially al azar y de forma uncontrolable. This also limits the amount of particles that can be grouped together in a collective state. En cambio, con el nuevo sistema, cada pulso de control entrega realente un fotón con las propiedades desideadas. Y, básicamente, se puede generar cualquier candidad de photones entrelazados.

In addition, the new method is much more efficient than the previous ones.

All this can facilitate the construction of quantum computers that are quite powerful and robust.

Thomas and his colleagues exponen los detalles técnicos de su nuevo sistema en la revista académica Nature, bajo el título “Efficient generation of entangled multiphoton graph states from a single atom”. (Fuente: NCYT de Amazings)


Leave a Comment

Your email address will not be published. Required fields are marked *